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A theory of membrane-adhesion-induced phase separation of two species of ligand-receptor complexes (i.e.,
junctions) is presented. Different species of junctions are assumed to have different natural heights and flex-
ibilities. It is shown that the equilibrium properties of the system are equivalent to a membrane under an
effective external potential, and for given junction flexibility difference phase separation occurs at sufficiently
large junction height difference. The phase coexistence curve shows two distinct regions. (i) When junction
height difference is large, the system is far from the mean-field critical point. Because of the higher entropy
associated with softer junctions, phase coexistence occurs when the harder junctions have higher effective
binding energy (free energy released due to the formation of a junction). (ii) When junction height difference
is small such that the system is near the mean-field critical point, the contribution of the binding energy of the
softer junctions to the free energy of the state with intermembrane distance close to the natural height of the
harder junctions is not negligible. Therefore phase coexistence occurs when the harder junctions have smaller
effective binding energy. Monte Carlo simulation that studies the effect of non-Gaussian fluctuations on the

critical point indicates that the situation described in (ii) can be observed in typical biological systems.
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I. INTRODUCTION

The physics of membrane adhesion [1] has attracted at-
tention from both experimentalists and theorists in recent
years [2-10]. Membrane adhesions are often mediated by
more than one type of lock-and-key molecular complexes (in
the rest of this article, these complexes are called junctions
for simplicity). A celebrated example is the formation of an
immunological synapse between a T cell and an antigen-
present cell (APC), a key event governing a mature immune
response. [11] When a T lymphocyte interacts with an APC,
a patch of target-patterned membrane adhesion region forms
between them, where the TCR/MHC-peptide complexes ag-
gregate in the center where a LFA-1/ICAM-1 complex-rich
region surrounds it. This and other types of membrane-
adhesion-induced phase separation of two species of junc-
tions have been a topic of considerable research interest
[12-14]. Qi et al. [12] developed a set of coarse-grained
reaction-diffusion equations to model the dynamics of immu-
nological synapse pattern formation. Their study qualita-
tively agrees with experiments [11] and suggests that, be-
cause of the height difference between the two species of
junctions, there is a phase separation of different types of
junctions induced by membrane adhesion, and the formation
of a target-patterned immunological synapse is a natural re-
sult of this phase separation. Although recent Monte Carlo
simulation of Weikl and Lipowsky [14] shows that the height
difference between different types of junctions only drives a
phase separation, and the formation of a target-patterned im-
munological synapse has to be assisted by the cytoskeleton,
there is no doubt that statistical physics plays a major role in
clarifying the underlying mechanism of membrane adhesion
mediated by multiple species of junctions.

Besides the study of the dynamics of immunological syn-
apse formation, equilibrium statistical mechanics and ther-
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modynamics also provide much information on membrane-
adhesion-induced phase separation of multiple species of
junctions. For example, one of us [15] has developed an
equilibrium statistical mechanical analysis which provides a
phase diagram for such systems on the mean field level. The
effects of membrane height fluctuations were also studied by
a one-loop calculation in [15], and the result shows that
membrane height fluctuations not only renormalize the bind-
ing energy of the junctions but also induce effective interac-
tions between the junctions. Another recently developed
equilibrium macroscopic theory by Coombs et al. [16] that
basically extends the classical work of Bell [17] to the case
of the T cell/APC system provides criteria for the formation
of target-patterned immunological synapses by line-tension
considerations. An interesting work by Raychaudhuri er al.
[18] reduces the reaction-diffusion equations in [12] to an
effective membrane model, and the condition for forming an
immunological synapse is studied by the mean field, Gauss-
ian, and renormalization group theories.

In this article, we reexamine the system studied in [15]
with an effective membrane model that is closely related to
[18]. Instead of focusing on the T cell-APC system as Ref.
[18] does, we are interested in the general case of two mem-
branes binding to each other due to the presence of two junc-
tions types. Our aim is to provide the equilibrium phase dia-
gram for this type of system by including the effects of
junction height difference, junction flexibility difference, and
thermally activated membrane height fluctuations. In Sec. II,
we introduce our model Hamiltonian. By summing over all
possible junction distributions, an effective membrane model
with only one fluctuating variable, i.e., the intermembrane
distance, is obtained. In this model the specific ligand-
receptor interactions are replaced by an effective intermem-
brane potential that comes from the thermal average of
junction-induced interactions between the membranes. In
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Sec. III we study the phase diagram of this system in the
mean field level. In this simple analysis the equilibrium in-
termembrane distance is located at the minimum of the ef-
fective intermembrane potential, and phase coexistence oc-
curs when the effective intermembrane potential has two
degenerate minimums. Our analysis shows that the mean
field model of the effective intermembrane potential ap-
proach is equivalent to the hard membrane solution of [15],
in which the analysis is done by deriving the effective inter-
junction interactions by neglecting membrane height fluctua-
tions. In Sec. IV we apply Gaussian approximation to study
the effect of membrane height fluctuations on the phase dia-
gram for the case when two species of intermembrane junc-
tions have different flexibilities. We find that the phase coex-
istence curve shows two distinct regions. The first region is
when junction height difference is sufficiently large such that
there is no type-a junctions in the type-gB-junction-rich do-
main (a# B). In this case phase coexistence occurs when the
harder junctions have higher effective binding energy (effec-
tive binding energy is the free energy released by the system
when a free ligand and a free receptor form a junction) be-
cause the harder junctions have less entropy than the softer
junctions. The second region is when the junction height
difference is not very large such that the system is in the
two-phase region close to the mean field critical point. In this
case the density of the softer junctions in the state where
intermembrane distance is close to the natural height of the
harder junctions is not negligible because they can be
stretched or compressed easily. As a result the effective bind-
ing energy of the softer junctions lowers the free energy of
the state with intermembrane distance close to the harder
junctions, therefore phase coexistence occurs when the effec-
tive binding energy of the harder junctions is smaller than
that of the softer junctions. Section V discusses possible ef-
fects of non-Gaussian fluctuations with Monte Carlo simula-
tions and summarizes this work.

II. THE MODEL

The system that we study in this article is shown sche-
matically in Fig. 1. Two species of ligand-receptor pairs bind
two membranes together. The heights of the membranes
measured from the reference plane (i.e., the xy plane) are
denoted by z,(r) and z,(r), respectively, where r=(x,y) is a
two-dimensional planar vector. There are two types of an-
chored receptors in membrane 1 and two types of anchored
ligands in membrane 2. Type-a receptors (« is 1 or 2) form
specific lock-and-key complexes with type-« ligands. These
are reversible, noncovalent bonds. The density of type-«
junctions at r is ®(r), and the densities of free type-a re-
ceptors and ligands at r are W, (r) and W, ,(r), respectively.
The binding energy of a type-a junction is denoted by Eg,.
Choosing the energy unit to be kg7, the effective Hamil-
tonian of the system in the mesoscopic scale where the con-
tinuum theory of membrane elasticity is applicable has the
following form:
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FIG. 1. Schematics of the system. Two species of ligand-
receptor pairs bind two membranes together. The heights of the
membranes measured from the reference plane (i.e., the xy plane)
are z;(r) and z,(r), respectively, where r=(x,y) is a two-
dimensional planar vector. There are two types of anchored recep-
tors in membrane 1 and two types of anchored ligands in membrane
2. Type-a receptors (a is 1 or 2) form specific lock-and-key com-
plexes with type-a ligands. They have different natural lengths £,
and h,. In general, different types of junctions also have different
flexibilities. The softer junctions are easier to be stretched or com-
pressed from their natural length than the harder junctions.

H= f dzr(g[vzh(r)]2+g[Vh(r)]2
2 )\ 2

+ > ?“‘Da(r)[h(r) —h 2= (I)a(r)EBa)- (1
a=1 a=1

Here h(r)=z,(r)—z,(r) is the intermembrane distance at r.
The first and second terms on the right-hand side are the
bending elastic energy and surface tension of the mem-
branes. « is related to the bending modulus of the mem-
branes by k=x K,/ (K + ;) [20], and 1y is related to the sur-
face tensions of the membranes by y=17y,v,/(v,+7y,) [20].
For simplicity we have neglected the possible dependence of
x and vy on the densities of the receptors and ligands an-
chored in the membranes. We assume that in the presence of
a type-« junction, the interaction energy between the mem-
branes acquires a minimum at ~=h,, (the natural length of a
type-a junction), and the coupling term Eizl()\a/Z)(I)a(r)
X[h(r)—h,]*> comes from the Taylor expansion around this
minimum. Here A\, is the flexibility of a type-a junction
against stretch and compression. The last term on the right-
hand side is the binding energy between the receptors and the
ligands. Typical values of material parameters mentioned
above are listed in Table I. To focus on the effects of mem-
brane and junction elasticity, the direct interactions between
the receptors, ligands, and junctions have been neglected in
this model. For the same reason, the nonspecific interactions
between the membranes are also neglected, except for the
constraint 2> 0, i.e., the membranes cannot cross each other.
We further choose the unit length in the xy plane to be a
~ 6 nm, the smallest length scale for the continuum elasticity
theory of membranes to be valid [22], and the unit length in
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TABLE 1. Typical values of material parameters.

Parameter Symbol Typical value
Bending rigidity K 2-70Xx1072° Nm [2]
Surface tension % 24X 107° N/m [21]
Junction elastic constant g 10—10°X 107° N/m [17]
Junction length h, 10-30 nm [17]
Junction binding energy Eg, 10kgT
Number of receptors Nira 103/ cell [17]
Number of ligands Nig 103/ cell [17]
Surface area of cells Ac 10-10* pm?

the z direction is chosen to be \e"aszT/ k=\a%/ k=I,. Thus
the Hamiltonian of the system can be expressed in the non-
dimensional form,

1 r
Hon = J dzr(;[Vzl(r)]% E[Vl(r)]2

2 A 2
+> ) amlir) - L= %EBQ), )
a=1 a=1

where [=h/l; is the dimensionless intermembrane distance,
l,=h,lly is the dimensionless natural length of type-a junc-
tion, ¢,=a’®, is the dimensionless junction density, I’
='yl% is the dimensionless surface tension, Aa=)\al(2) is the
dimensionless junction flexibility, and all in-plane lengths
and heights are scaled by a and [, respectively.

Our analysis is performed on a two-dimensional square
lattice with L>=N sites and lattice constant a. Therefore, we
shall proceed with our discussion with the discrete version of
Eq. (2),

L

r
Hi= 3 [%[Adza,j)]% SIviEHF

ij=1
’ A
+ E ¢a(l,‘/)<7a[l(l7.]) - la]2 - EBa>:| > (3)
a=1

where the discrete Laplacian of [ is given by A,l(i,j)=I(i
+1,)+1(i—1,j)+1(i,j—1)+1(i,j+1)—41(i,j), and the dis-
crete gradient of [ is Vl(i,j)=%{[l(i+1,j)—l(i—l,j)]ﬁ
+[1G,j+ 1) =10, j-1D]§}.

The partition function of this system can be expressed as
integrals over all possible membrane height and junction dis-
tributions under the condition that the free ligands, free re-
ceptors, and junctions have reached chemical equilibrium.
When the densities of free ligands and free receptors are
small, it is convenient to define the effective binding energy
of the junctions,

eEBa"':u“a = lpRalpLaeEBa = eEeff @, (4)

where u, is the chemical potential of type-a junctions, and
Yr, and ¢, are the dimensionless type-a receptor and
ligand density, respectively. The effective binding energy can
be intuitively understood as the free energy released by the
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system due to the formation of a junction. Higher value of
E,;r . means higher tendency for the formation of type-a
junctions. We assume that each site can be occupied by lip-
ids, or one type-1 junction, or one type-2 junction, therefore
our analysis is carried out in grand canonical ensemble. [19]
After summing over all possible distributions of the junc-
tions, the partition function can be expressed as

L
Z= J Dlle A | [1 +exp(Eeff1 —%[l(i, j)—l,]z)

ij=1

A
+ eXP<Eef_'f2 - 72[1(1',]') - 12]2)} (5)

L
=f DU]CXP[— (Hel+ by ngf[l(i,j)])] (6)

ij=1

where

Lol r
Hy= > (E[Adl(i,j)lz + E[Vl(i,j)]2>, (7)

ij=1
and
2

Voll) == lnll + 2 exp(Eeffa— %(Z - la)Z)] . (8)
a=1

That is, after summing over all possible junction distribu-
tions, the partition function becomes the same as that of a
membrane with height [(i,j) under an effective potential
V,A1). It is important to point out that although the effective
potential approach is apparently similar to Ref. [18], the ba-
sic idea behind the current approach is actually more closely
related to the series of studies carried out in Refs. [6,7,23].
Reference [18] begins with reaction-diffusion equations for
the system, in the limit when binding and unbinding of
ligand-receptor pairs are fast; the dynamics of the membrane
height in this system is shown to be equivalent to that of a
membrane under an effective external potential. On the other
hand, we study the equilibrium properties of the system; the
effective potential is a result of summing over all junction
distributions in a grand partition function. This is closer to
Refs. [6,7,23], where generic interactions, repellers, and re-
versible stickers between a membrane and a substrate is con-
sidered, and the equilibrium properties of the system are
studied by first summing over the degrees of freedom asso-
ciated with the repellers and stickers; after this step the sys-
tem becomes equivalent to a membrane under an effective
potential. The membrane height is then studied either by ana-
Iytical approximation or by Monte Carlo simulations. Our
potentials and the effective potentials in Refs. [6,7,23] all
arise as a result of partial summation of the grand partition
function. The validity of this approach in equilibrium is in-
dependent of the time scales of junction binding and unbind-
ing. Of course, therefore our study does not provide informa-
tion about the dynamics of the system.

Typical experimental systems (either in living cells or ar-
tificial membranes) are not open systems that exchange
ligands and receptors with the environment. Instead, the total
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numbers of ligands and receptors in the system are often, to
a good approximation, fixed. To compare our analysis with
experiments, notice that the total number of type-« junctions,
N,, in the system can be expressed as the derivative of the
grand potential with respect to its effective binding energy
because

G=-InZ

Ao
exp(Eeffa_ 7[1(1»]) - la]z)

)

i Ag . .
T\ 1+ exp(Eeffﬁ— _zé[l(l,]) - lﬁ]z)
B

)

and Ng, (N;,), the total number of type a receptors (ligands)
in the system, can be calculated by adding the total number
of free type-a receptors (ligands) to the total number of type-
a junctions. For example,

NRa = AC’ﬂRa + NlpRalpLa

eXP(— %(l - la)2>

X eFa

k]

N
I+ E Urpiip eXP<EBﬁ - _2é(l - lﬁ)2>
B

(10)

where A is the area of the cell membrane in which type-«
receptors are anchored. Typical values of the effective bind-
ing energies can be estimated in the following way. Typical
values for Ng, and N, are on the order of 10° per cell.
Although Acig, and Acify, (total number of free type-a
receptors and ligands) are smaller than Ng, and N;,, we
expect them to be of the same order as Ny, and N, , except in
some extreme cases where almost all of the receptors and
ligands become junctions in the adhesion zone. Therefore
from Ao~ 10—-10* um?, we find that typical values of i,
and ¢, should be 1/fRa(La)$0(10‘2). With typical binding
energy Ep,~ 10-20, typical values of £, and E, -, should
be of order unity, and they can be positive or negative. In the
rest of this article, we shall choose the effective binding en-
ergies within this range such that the parameters correspond
to typical experimental systems.

III. EFFECTIVE MEMBRANE POTENTIAL AND MEAN
FIELD THEORY

Let us neglect membrane height fluctuations and assume
that the membranes are flat for a moment. In this mean field
approximation the equilibrium value of I(i,;) is simply de-
termined by minimizing V.. In order to proceed with our
discussion in a more systematic way, we further define A,
=A A, Eopp =Eefp 1% E 0, L=+1)/2, A,=(,-1,)/2,
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TABLE II. Dimensionless parameters introduced in the text.

L=l+5/2
Ah=12—11/2
A=A x£A,
A=A_/A,
g=A}21A+
Eofps=Eefp1=Eefrn

N=A_/A,, and g=AZA+. These parameters are listed in
Table II. Substituting these parameters in Eq. (8), one finds

that
Vef(l)=—ln{l +exp<Eeff+T—g/2)A(z)}, (11)
where
A2) =exp<Ee'ff’;gM2 —g] Z)\[(Z"' 12— 1])
+exp(— EEff_;g)\/z —g1 ;)\[(Z— 1)?- 1]),

(12)
and z=(I-1,)/A;. The equilibrium membrane height is deter-
mined by the condition

( E e ff+ - g/ 2
exp| ———

A 2
dz

) dAG) _ 0. (13)
E,; —gl2 d ’
—mz il )A(z) ’

1+exp<

therefore the equilibrium value of z is a root of dA(z)/dz
=0, and it is independent of E, 1, The fact that the phase
boundary in the mean field theory is independent of the sum
of the effective binding energies of the junctions, Eopy s and
only depends on \, g, and E,; is an artifact that only holds
in the mean field theory. When we include membrane fluc-
tuations by Gaussian approximation in the next section, the
resulting phase boundary does depend on Ey.-

When A=0, both types of junctions have the same flex-
ibility, and

E,
Az) = exp(% - i[(z +1)2- 1])

Eey_ 8 b )
+exp( 5 4[(z 1" =1]/. (14)
In this case, the phase boundary in the gE, ;s plane is located
at the E,; axis. Straightforward calculation leads to the
critical point (E,; =0, g=2). When g <2, there is a triple
root for dA(z)/dz=0 at z=0 which corresponds to I(i,j)=1,
at all lattice sites. The physical picture of this case is clear:
when both types of junctions have the same flexibility
against stretch and compression, phase separation is driven
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FIG 2. Mean field phase coexistence curves for A,=0.3 and

=3 L (circles), - 15 (squares), and ¢ L (triangles). Curves with greater A
shift farther from the E,; axis. When g is sufficiently large, all
phase coexistence curves shift towards the E,; axis; this means
that the effect of junction height difference is the dominant mecha-
nism for phase separation at large g.

by the height difference of different species of junctions, and
it occurs when g is sufficiently large. Along the phase coex-
istence curve, the system separates into a type-1l-junction-
rich domain and a type-2-junction-rich domain.

Let us now consider the more general case when different
species of junctions have different flexibilities, i.e., A #0. In
this case, the phase coexistence curve shifts away from
E,;r =0. Expanding V, around A=0 leads to the position of
the critical point for small \,

2
g=2<l —)‘Z> +O0Y,

E ==X+ O0\). (15)

The critical value of g decreases as the difference of junction
flexibility increases, and the phase coexistence curve near the
critical point shifts away from the E,; axis such that £,z
and A have opposite signs. We expect that the phase coexist-
ence curves move toward the E, ., axis as g increases be-
cause at large g the effect of junction height difference
should be more important than the junction flexibility differ-
ence. Since, in this mean field theory, the location of the
phase coexistence curve is independent of E,yr, we plot the
phase coexistence curves in two different ways in Figs. 2 and
3. Figure 2 (ﬁxed A.) shows phase boundaries for A,=0.3
and A= % , 15 , 6, Fig 3 (ﬁxed \;) shows phase boundaries for
A;=0.2 and A= 3 s 7 s 15 Both figures show that the effect of
flexibility difference is indeed more important near the criti-
cal point, and at large g the phase boundaries are dominated
by junction height difference, therefore they move towards
the E,;; axis as g increases, in agreement with our argument.
The critical points agree well with our small N\ approximation
in Eq. (15) although the shift of g from 2 is too small to be
seen from the figures. In this section we only describe the
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FIG 3. Mean field phase coexistence curves for A;=0.2, and
=- (circles), & 7 (squares), and 5 (triangles). Curves with greater
shift farther from the E,z axis. All phase coexistence curves shift
towards the E,z axis when g is sufficiently large; this means that
the effect of junction height difference is the dominant mechanism
for phase separation at large g.

shape of phase boundaries in the mean field theory. The rea-
son that E,,, and N have opposite signs near the critical
point will be discussed in the next section when Gaussian
fluctuations around the mean field solution are included.

It is interesting to point out that in the mean field solution,
the sum of the densities of the junctions, {¢,+ ¢,), is the
same in both states. This has already been seen in [15] but
the reason for this special result can be understood in the
effective intermembrane potential approach more clearly.
Since

A
E exp<Eeffa - 7&(1 - la)2>

A
1+ 2 eXp(Eeﬁ-B— _25(1 - lﬁ)z)
B

=1 (") (16)

(1 + )=

from the fact that in the mean field theory the effective in-
termembrane potential is the same in both states, therefore
the total densities of junctions should be the same in both
states. In reality, intermembrane distance fluctuations should
be taken into account and this result is only an approxima-
tion.

Notice that all the predictions of the mean field theory of
this effective intermembrane potential approach are the same
as the hard membrane solution of Ref. [15]. In Ref. [15] the
hard membrane solution is found by first neglecting mem-
brane height fluctuations, then deriving effective interaction
between the junctions. The phase diagram in the hard mem-
brane solution comes from studying the effective interaction
between the junctions. Since both approaches neglect fluc-
tuations of intermembrane distance, it is not surprising that
they predict the same results on the mean field level. How-
ever, it will become clear in the next section that when the
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fluctuations of the intermembrane distance are taken into ac-
count, the present approach can be applied to study the phase
boundary for different Eopy.- On the other hand, the one-loop
calculation in Ref. [15] provides the fluctuation-induced in-
teractions between the junctions, but the phase boundary on
the one-loop level was not found. The effective membrane
theory of Raychaudhuri et al. [18] that is derived from the
fast-reaction limit of the reaction-diffusion equations of [12]
is apparently similar to our theory. However, in Ref. [18] the
immunological synapse formation is the main issue, and
Raychaudhuri ef al. mainly study the phase diagram in the
i, plane for given g, \, and Ejy, (these values are taken
from the T cell/APC system), while we are interested in the
phase diagram on the gE,; plane for various values of Epy,
and A.

IV. FLUCTUATIONS OF INTERMEMBRANE DISTANCE

In the mean field analysis, the equilibrium intermembrane
distance is determined by minimizing the effective inter-
membrane potential and the fluctuations of intermembrane
distance are neglected. However, in reality the intermem-
brane distance is not fixed; instead it fluctuates around the
minimums of the effective intermembrane potential. The free
energy in a state with average intermembrane distance close
to [, (therefore this minimum is called /,,;, ,) can be calcu-
lated approximately by Gaussian approximation, i.e.,

—In fHdl(i,j)

XCXp|:—Hd—Z ( eff+ [l(l’J) mm a] )i| P
L]

(17)

where V. and V, ofy A€ both evaluated at /=1, ,. The phase
coexistence curve in the Gaussian theory can be determined
by comparing the free energies of the two states and seeking
the parameters that lead to degenerate free energies. Figure 4

shows the phase boundaries for Eq, =2, A,=0.3, and N

é, 145 , 5> Tespectively. Flgure 5 shows phase boundaries for

systems with A =0.3, )\—3, and E,;y =—4,-2,2,10, respec-
tively. Both figures clearly show that the phase coexistence
curve has two distinct regions. In the large g region, when
A>0 (A <0), the phase coexistence in the Gaussian theory
occurs when E,;; >0 (E,;; <0). In the small g region, the
phase boundaries turn towards the opposite side of the £,z
axis and agree qualitatively with the mean field theory. Fig-
ure 4 shows that as \ increases (relative junction flexibility
difference increases), the distance between the phase bound-
ary and the E,; axis in the large g region becomes more
significant. But in the small g region, the phase boundary
turns towards the opposite side of the E,; axis, and the
curvature in the turning region is more significant for sys-
tems with greater A. Figure 5 shows that in the large g region
the phase coexistence curves for systems with smaller Eyy,
are located farther from the E,; axis (the phase boundary
predicted by the mean field theory) because fluctuations are
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FIG 4. Phase coexistence curves for E,p =2, A,=0.3, and A

(mrcles) 15 (squares), and ¢ 6 (triangles) in Gaussian theory. In
the large g region phase coexistence occurs at E,;r >0 and in the
small g region phase coexistence occurs at £, <<0. Phase coexist-
ence curves for systems with greater N (greater junction flexibility
difference) have higher curvature in the crossover region between
the large and small g regions.

more pronounced as E,;; decreases. On the other hand, the
phase boundaries converge towards the same point as g de-
creases. This is because Gaussian theory predicts the same
critical point as mean field theory and in the mean field
theory the critical point is independent of Ey..

The shape of the phase boundary in the large and small g
regions can be understood by analyzing typical shapes of V,
in both large g and small g regions (plotted in Flgs 6 and 7).
Figure 6 shows that VA1, o) and —In(1+e e ) (this ex-
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L ®
i ‘.-'
5 : -

M 1 M 1 M 1 M 1 M 1 M 1 M
Y23 02z w01 0 01 02 03

FIG. 5. Phase coexistence curves for A,=0.3, A=1 3 and Eg_m
=—4 (circles), =2 (squares), 2 (diamonds), and 10 (trlangles) in
Gaussian theory. In the large g region phase coexistence occurs at
E,r >0 and in the small g region phase coexistence occurs at
E.fr <0. Phase coexistence curves for systems with greater Eg,
are closer to the E, ¢ axis in the large g region. All curves converge
to the same critical point because Gaussian theory predicts the same
critical point as the mean field theory and in the mean field theory
the critical point is independent of Epy,.
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FIG. 6. Effective intermembrane potential in the large g region
with Eyfr =2, E,fp =0, A,=0.3, )\—3, and g=10.8. The softer junc-
tions are shorter than the harder junctions. Solid curve, V.g; dotted
curve, —In{l +exp[Eeﬁ —(A/2)(I-1))*]}; dashed curve, —In{l
+explEypy,—(Ap/2)(1- 12)2]} The dotted and dashed curves almost
overlap with the solid curve at / close to /; and /,, respectively. This
means that the density of type-« junction in the type-/3 junction-rich
state is negligible. In this case, because the membrane fluctuation
around the softer junction is more significant, this state acquires
more entropy, therefore phase coexistence should occur when the
harder junctions have higher effective binding energy.

0~5_""|""|"-'|
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13 10 20 30 20

FIG. 7. Effective intermembrane potential in the small g region
with E,; =2, E,fp =0, A,=03, A=1 3» and g=3.675. The softer
junctions are shorter than the harder Junctions. Solid curve, Vs
dotted curve, —In{l+exp[E,z —(A/2)(I-1;)*]}; dashed curve,
—ln{1+exp[Eeff2—(A2/ 2)(I-1,)*]}. The dotted curve almost over-
laps with the solid curve when / is close to the minimum /,,;, 1, this
means that the density of the harder junctions in the domain with /
close to the minimum /,,;, ; is negligible. On the other hand, the
dashed curve is considerably higher than the solid curve when [ is
close to the minimum /,,;, ,, this means that the density of the softer
junctions is not negligible in the domain with / close to the mini-
mum /,,;, », therefore the effective intermembrane potential at /,,;, »
is lowered due to the contribution from the binding energy of these
softer junctions.
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pression is the effective intermembrane potential without
contribution of type- junctions) are very close to each other
when [ is close to [, , for both @=1 and 2, therefore in this
case the equilibrium density of type-B junctions in a type-
a-junction-rich state is negligible (8# @), I,,;, =14 and the
free energy of the type-a-junction-rich state simply comes
from the binding energy of type-« junctions and fluctuations
of the intermembrane distance around type-« junction’s natu-
ral height. Due to the higher entropy associated with the
softer junctions (more intermembrane distance fluctuations),
phase coexistence occurs when the harder junctions have
higher effective binding energy (i.e., higher binding energy
or higher densities of free ligands and free receptors). This
effect is more significant for systems with greater \ (see Fig.
4) or smaller Ey, (see Fig. 5). On the other hand, in the
small g region, the probability that a type-£ junction appears
in the region where the intermembrane distance is closer to
the natural height of type-a junction can be non-negligible.
Especially, as Fig. 7 shows, the minimum of V, at / close to
the natural length of the harder junctions is lowered signifi-
cantly because of the contribution from the binding energy of
the softer junctions. Mathematically this can be understood
by expanding VAl o) around small exp[E,z z—(Ag/2)
><(lmin a_lﬁ)z]’

A,
Veff(lmin a) == 1I1|:1 + exp(Eeffa - 7( min a -1 ) >:|

A
exp(Eeffﬁ - _zg(lmin a” 1[3)2)

18
E a 2 ( )
p eff a 2 min « [e2

The second term on the right-hand side is the contribution
from type-g junctions. Thus the minimum of V. at [,;, o
shifts downward due to the presence of SB-type junctions, and
this shift is more significant when the density of type-£ junc-
tions is higher. Clearly, the softer junctions can be stretched
or compressed easier than the harder junctions, therefore
they are more effective at lowering V,{(i,;) near the mini-
mum closer to the natural length of the harder junctions.
Therefore in this case phase boundary shifts towards smaller
effective binding energy of the harder junctions.

In the present work the shift of the phase boundary in
both large and small g regions finds natural explanation from
the shape of effective intermembrane potential while in Ref.
[15] only the phase separation near the critical point was
explained from the interjunction interaction point of view. In
Ref. [15] the phase separation near the critical point was
interpreted as the aggregation of the softer junctions since it
was shown that the density of the softer junctions near the
critical point is higher than the harder junctions in both
states, and the phase boundary in the large g region was
predicted to be located on the E,z axis because junction
height difference should be dominant in that region. There-
fore the present approach provides the physical mechanisms
that control the shape of the phase coexistence curve, and
Ref. [15] explains the nature of the phase separation near the
mean field critical point. A combination of the both present
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FIG. 8. Schematics of the phase boundary for A >0. There are
two routes to move from state A to state B. (i) decrease g and (ii)
increase Ef .

approach and the approach in Ref. [15] provides a complete
physical picture of the general adhesion-induced phase sepa-
ration of two species of junctions.

V. DISCUSSION AND SUMMARY

Through an effective intermembrane potential approach,
we have obtained the phase diagram of the systems that we
are interested in by mean field and Gaussian theories. Al-
though the phase separation is generally interpreted as driven
by the natural height difference of the junctions, we have
studied the effects of junction flexibility difference, ther-
mally activated intermembrane distance fluctuations, and the
strength of effective binding energy on the phase diagram of
these systems, too. The main result of our study is that the
dominant physical mechanisms that control the shape of the
phase coexistence curve in the gE.; plane can be under-
stood by analyzing the shape of the effective intermembrane
potential. We find that when different types of junctions have

16 T T T T T I
..
14F \\"_ —e/[-16 -
L 4N *~-e[=32
\ m---m/=-64
Q' E
1.2F .
1 - -
" 1 " 1 L 1
2.4 2.8 3.2 3.6

FIG. 9. C, as a function of g for L=16 (circles), 32 (diamonds),
and 64 (squares) for E,; =0, A,=04, E 5y =2, N=0, and /;=15.
The common intersection point in this case is close to g=2.8. For
clarity, error bars are shown for the L=64 case only; this is also the
case with the greatest error bars.
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FIG. 10. Binder cumulant C, as a function of g for L=16
(circles), 32 (diamonds), and 64 (squares) for E,; =0, A,=0.4,
Eypr,=2, A=0, and [;=15. The common intersection point in this
case is close to g=2.8. For clarity, error bars are shown for the L
=64 case only; this is also the case with the greatest error bars.

different flexibilities, the phase coexistence curve shows very
different behavior in the large and small g regions. In the
large g region, the fluctuations of intermembrane distance
around the natural height of different types of junctions is
responsible for the shift of the phase boundary from the E,
axis. As a result, phase coexistence occurs when the harder
junctions have greater binding energy or higher ligand and
receptor densities than the softer junctions. In the small g
region, the junction height difference is sufficiently small
such that the softer junctions can be stretched or compressed
and contribute to the free energy of the state with intermem-
brane distance close to the natural height of the harder junc-
tions. As a result the effective intermembrane potential at the
minimum that is closer to the natural height of the harder
junctions is lowered due to the contribution from the binding
energy of the softer junctions. This effect makes the phase
boundary shift towards the other side of the E,;; axis where
the binding energy of the harder junctions or the densities of
ligands and receptors of them are smaller than those of the
softer junctions.

Figure 8 shows the schematics of the phase boundary for
the case when type-1 junctions are less flexible than type-2
junctions, i.e., A >0. With the wide range of material param-
eters listed in Table I, in principle the parameter space in Fig.
8 should be able to be explored pretty thoroughly by experi-
ments. However, most of the existing experimental work is
carried out in T cell/APC systems, therefore up to now ex-
periments have explored a relatively small region of the pa-
rameter space only. To observe a phase transition from state
A to state B in Fig. 8 experimentally, one may either (i)
reduce the value of g or (ii) increase the value of E,; . It is
relatively difficult to control g during an experiment because
g=(I;=1)*(\;=\,), and it is difficult to change either the
natural height or the flexibility of the junctions during an
experiment. However, the effective binding energy can be
tuned by adding free ligands or receptors to the solution, thus
a phase transition from state A to state B by method (ii)
should be accessible for typical experiments. The dynamics
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of this phase transforming process is also an interesting re-
search topic to explore.

Our theory does not include the effects of non-Gaussian
fluctuations and the entropic repulsion between the mem-
branes. Non-Gaussian fluctuations should be important near
the critical point and the entropic repulsion between the
membranes should be important near the unbinding transi-
tion. Numerical simulation is a suitable method to study both
effects quantitatively; this will be a future work [24]. Here
we first discuss the effect of non-Gaussian fluctuations on the
critical point of our systems. It is well known that the critical
value of g, i.e., g., is located at higher g than the prediction
of the mean field theory, and the actual value of g. should
depend on surface tension, membrane bending rigidity, and
Epy, (i.e., the binding energies of the junctions and the den-
sities of the ligands and receptors), therefore it remains to
check whether the small g region discussed in this article can
actually be observed in typical systems. The Monte Carlo
simulations discussed in the Appendix suggest that the phase
separation in the small g region should be able to be ob-
served in typical systems. However, it is still possible there
are some special cases where E, 7, can be extremely small
such that small g region of the phase coexistence may not be
observed because g. in these systems becomes very large.
We further point out that the mechanisms that control the
shape of the phase boundaries mentioned in this article come
from observing the shape of V.. Therefore they are not
affected qualitatively by the approximations made in our cal-
culations. We expect non-Gaussian fluctuations change the
exact location of phase coexistence curves, but the qualita-
tive shape of these curves should be the same as our predic-
tion.

In summary, the phase diagram of membrane-adhesion-
induced phase separation of two species of junctions is stud-
ied thoroughly with mean field and Gaussian theories. Our
study reveals the physics behind this phase diagram as long
as the system is not too close to the unbinding transition
where membrane-membrane collisions are important. The re-
sult of our study can be useful for designing biomimetic
membrane systems and in studying cell adhesion processes.
The adhesion and detachment dynamics for these systems is
an important problem that remains partially understood
[12,14,25], and our study could be a suitable starting point
for future research work in this direction.
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APPENDIX

In this appendix we present some preliminary results from
the Monte Carlo simulations applied to our systems. The
simulations are performed on lattices with size up to 128

PHYSICAL REVIEW E 73, 011914 (2006)
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Eeff+
FIG. 11. g. as a function of Eopy, for E,;r =0, A;=0.4 (corre-
sponds to typical systems), N=0, and /;=15. g. increases as Eopy,
decreases; for Eopy, between —4 and 8 the value of g, for A=0 varies
from 3.6 to 2.8.

X 128 sites for A=0 (both types of junctions have the same
flexibility), E,; =0, A,=0.4 (corresponds to typical sys-
tems), /;=15, —4<E,; <8, and different values of g. Simu-
lations for A #0 (junctions have different flexibilities) and
Ep <-4 (very weak effective binding energy, near unbind-
ing transition) will be reported in a future work [24]. Me-
tropolis algorithm and periodic boundary conditions are ap-
plied to the simulations. To determine the critical point, we
define the Binder cumulants C, and Cy,

(& &
Cy= e ST (A1)
where
1 L
Z= EE 2(ir)) (A2)

ij

is the spatial average of z. For g>g, and L> ¢ (the correla-
tion length of z), the moments reach the values C,=1 and
Cy=1. For 0<g<g.and L>¢, C,=7/2 and C,=3. For 0
<g<g.,and L<¢ C, and C, vary only weakly with the
linear size L [23,26]. Therefore g. can be found from the
common intersection point of C, and C,, respectively, as
functions of g for several values of L [23,26].

Figures 9 and 10 show C, and C, for E,z =0, Eyp,=2,
A,=04, [,=15, and several values of L. In this case the
critical point is located at g.~2.8. The critical points for
different E,y are determined in this way and shown in Fig.
11. It is clear that g. increases as Ey, decreases, as we
expected. Figure 11 shows that for E,;; between —4 and 8
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the value of g. for A=0 varies from 3.6 to 2.8. At least for
small N\, we expect g. for typical systems also falls within
similar range. Since Figs. 4 and 5 both show that the cross-
over from large g region to small g region occurs at g=6,

PHYSICAL REVIEW E 73, 011914 (2006)

we conclude that small g region can be observed in typical
systems. However, it is possible that in certain special cases,
E,y can be very small and small g region of phase coexist-
ence could not be observed in these systems.
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